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Abstract— In this paper, we introduce and study Gorenstein 

FPn injective modules and investigate the homological 

properties of them.   

 
Index Terms— Gorenstein FPn injective modules, 

dimensions, (n-1)-coherent ring.  

 

I. INTRODUCTION 

  The flat modules and FP-injective modules play an 

important role in characterizing coherent rings. Naturally, 

many literature articles generalized these notations in relative 

homological algebra. In [5], Costa introduced absolutely 

clean and level modules. In [6], Chen and Ding introduced 

n-flat and n-FP injective modules. In 2015, Wei and 

coauthors call them FPn-injective and FPn-flat , respectively. 

In 2017, Bravo and others investigate n-coherent and give 

some equivalent characterizations of (n-1)-coherent ring [7]. 

On the other hand, Enochs and Jenda introduced Gorenstein 

projective, injective, Gorenstein flat modules, and developed 

Gorenstein homological algebra in [2, 3.4]. Later, many 

scholars further studied these modules and introduced various 

generalizations of these modules. In [11], Mao and Ding gave 

a definition of Gorenstein FP-injective modules. However, 

under their definition these Gorenstein FP-injective modules 

are stronger than the Gorenstein injective modules. In 2014, 

Bravo et al. introduced in [1] the notion of Gorenstein 

AC-projective (resp., Gorenstein AC-injective) modules and 

established the ―Gorenstein AC-homological algebra" over an 

arbitrary ring. 

Inspired by aforementioned work, we introduce the 

concept of Gorenstein FPn-injective modules as a 

generalization of above Gorenstein homological modules. 

Then we character when a left module is Gorenstein 

FPn-injective over (n-1)-coherent rings. In the following, we 

recall some notions that will be used throughout the paper.  

Definition 1.1[3] A left R-module M is called Gorenstein 

FP-injective, if there exists an exact sequence 

E=· · · → E1 → E0 → E
0 
→ E

1
 → · · · 

of injective left R-module with M =Im (E0 → E
0
) such that the 

functor HomR(Q, -) leaves the sequence exact whenever Q is 

FP-injective. 

Definition 1.2[5] A ring R is called n-coherent ring, if every 

finite n-presented module coincident with finite 

(n+1)-presented module. 

Definition 1.3[5] A R-modules M is called finite n-presented, 

if there exists an exact sequence of left R-modules 

Pn→ Pn−1→ ···P1→ P0→ M → 0, 

where Pi is finitely generated projective for 0 ≤ i ≤ n. Such 

exact sequence is called a finite n-presentation of M. 

Definition 1.4[7] A right R-modules N is called FPn-flat if 

Tor
R

1 (N,F) = 0 for any finite n-presented module F. 
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 A left R-modules M is called FPn-injective if Ext
1

R(F, M) =0 

for any finite n-presented module F.  

II. GORENSTEIN FPN INJECTIVE MODULES 

Definition 2.1 A left R-module M is called Gorenstein FPn 

injective, if there exists an exact sequence 

E=· · · → E1 → E0 → E
0 
→ E

1
 → · · · 

of injective left R-module with M =Im (E0 → E
0
) such that the 

functor HomR(Q, -) leaves the sequence exact whenever Q is 

FPn-injective. 

Remark 2.2 (1) It is clear that each injective module is 

Gorenstein FPn injective. 

(2) If M is a Gorenstein FPn injective module, by symmetic all 

the kernels, the images, and the cokernels of E are Gorenstein 

FPn injective module. 

(3) Gorenstein AC injective ⊆  Gorenstein FPn injective ⊆  

Ding injective ⊆  Gorenstein injective. 

(4) If n = 0, then Gorenstein injective modules are Gorenstein 

FPn injective. 

(5) If R is n-coherent, then Gorenstein FPn injective modules 

are Gorenstein injective; If R is coherent, then Ding injective 

modules are Gorenstein FPn injective. 

(6) The class of Gorenstein FPn injectives is closed under 

direct summands. 

Theorem 2.3 The following assertions are equivalent for a 

left R-module M. 

(1) M is Gorenstein FPn injective. 

(2) M has an exact left injective resolution which is HomR(Q, 

−)-exact all FPn-injective left R-modules Q, Ext
i
R(Q, M) = 0 

for all i ≥1. 

(3) There exist a short exact sequence of left R-modules 0 → 

K→ E→ M → 0, where E is injective and K is Gorenstein FPn 

injective. 

Proof. (1) ⇔ (2), (1) ⇒ (3) is clear by the definition of 

Gorenstein FPn injective module. 

(3) ⇒ (2) Since K is Gorenstein FPn injective, there exist an 

exact sequence  

··· → E1 → E0 → K → 0, 

which is HomR(Q, −) –exact, where Q is FPn-injective and Ei 

are injective for all i ≥0. 

Note that the exact sequence of left R-modules 0 → K → E → 

M → 0 is HomR(Q, −)-exact, so we obtain an left injective 

resolution of M   

··· → E1→ E0→ E → M → 0. 

On the other hand,  for all FPn-injective Q, we have an exact 

sequences of left R-modules 

··· → Ext
i
R(Q,E) → Ext

i
R(Q,M) → Ext

i+1
R(Q,K)→ ···. 

By dimension shifting, Ext
i+1

R(Q, K) = Ext
i
R(Q, E) = 0 for all i 

≥ 1, therefore Ext
i
R(Q,M) = 0. So M is Goren 

stein FPn-injective by (1) ⇔ (2). 

Proposition 2.4 Let 0 → A→ B→ C → 0 be an short exact 

sequence of left R-modules. 

(1) If A and C are Gorenstein FPn injective, then so is B . 

(2) If A and B are Gorenstein FPn injective, then so is C. 

Gorenstein FPn injective modules 
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(3) If B and C are Gorenstein FPn injective, then A is 

Gorenstein FPn injective if and only if Ext
1
R(Q, A) = 0 for all 

FPn-injective left R-modules Q. 

Proof. This is similar to the proof of [4, Theorems 2.8, 2.11]. 

Lemma 2.5 Let M be a left R-module. Consider two exact 

sequences of left R-modules, 

0 → M → G0 → · · · → Gn-1→ Gn → 0, 

and 

0 → M → H0 → · · · → Hn-1 → Hn→ 0, 

where G0, · · · , Gn−1 and H0, · · · , Hn−1 are Gorenstein FPn 

injective , then Gn is Gorenstein FPn injective if and only if Hn 

is Gorenstein FPn injective . 

Proof. It is obtained by Proposition 2.4 and [10, Lemma 2.1]. 

Proposition 2.6 Let n >1. Then the following are ture for any 

(n-1)-coherent ring R. 

(1) Ext
i
R(F, M) = 0 for all finitely n-presented left R-modules 

F. 

(2) If 0 → T→ M → L → 0 is a short exact sequence of left 

R-modules with T and M FPn-injective, then L is 

FPn-injective. 

Proof. Let F be a finitely n-presented left R-module. There 

exists an exact sequence 0 → T → P → F → 0, with P finitely 

generated projective and T finitely (n-1)-presented. Consider 

exact sequences 

··· → Ext
1
R(T, N) → Ext

2
R(F, N) → Ext

2
R(P, N) → ···. 

since R is (n-1)-coherent, Ext
1
R(T, N) = 0.  Ext

2
R(F, N) = 0. By 

dimension shifting Ext
i
R(F,N) =0. 

(2) Let 0 → T → M → L → 0 be a short exact sequence. If N 

and M areFPn-injective, consider the exact sequence 

··· → Ext
1
R(F, M ) → Ext

1
R(F, L) → Ext

2
R(F, N)→ ···. 

By (1) we can get Ext
2
R(F, N) = 0, therefore Ext

1
R(F, L) = 0. 

so L is FPn-injective. 

Definition 2.7 Let M be a left R-modules and n >1. Put 

FPn-id(M) = inf｛m | 0 → M → E0 → · · · → Em+1 → Em→ 

0 is an FPn injective of M｝. 

If no such m exists, set FPn-id(M) = ∞. 

Then we call FPn-id(M) the FPn-injective dimension of M. 

Definition 2.8 Let n >1 and N a left R-modules. Put 

FPn-fd(N) = inf｛m | 0 → Fm → Fm-1 → · · · →F0→ N→ 0 

is an FPn flat of N｝ 

If no such m exists, set FPn-fd(N) = ∞. 

Then we call FPn-id(N) the FPn-flat dimension of N. 

Proposition 2.9. Let R be an (n-1)-coherent ring and n >1. 

Then the following conditions are equivalent for any left 

R-module M. 

(1) FPn-id(M) ≤ m. 

(2) Ext
m

R(Q, M) = 0 for all FPn-injective R-modules Q . 

(3) Ext
m+k 

R (Q, M) = 0 for all k ≥ 1, and all finite n-presented 

R-modules F. 

(4) For every exact sequence 0 → M → E0 → · · · → Em-1 → 

K→ 0 where E0 , ··· , Em−1 are FPn-injective, then also K is 

FPn-injective . 

Proof. It is easy to prove by dimension shifting and 

Proposition 2.6. 

Proposition 2.10. Let R be an (n-1)-coherent ring and n >1. 

Then following conditions are equivalent for N is a left 

R-modules. 

(1) FPn-fd(N ) ≤ m; 

(2) Tor
R

m+1 (N, F) = 0 for all finite n-presented R-modules F. 

(3) Tor
R

m+k (N, F) = 0 for all k ≥ 1, and all finite n-presented 

R-modules F. 

(4) For every exact sequence 0 → K → Fm−1→ ··· → F0→ N 

→ 0 where F0 , ··· , Fm−1 are FPn-flat , then also K is FPn-flat.  

Proof. It is similar to the proof of Proposition 2.9. 

Proposition 2.11 Let R be an (n-1)-coherent ring and n >1. 

Then following conditions are equivalent for C is a left 

R-modules. 

(1) FPn-fd(C) = FPn-id(C
+
); 

(2) FPn-idR(C) = FPn-fd(C
+
). 

Proof. This follows from the definition and [7, Proposition 

3.5]. 

Theorem 2.12 Let R be an (n-1)-coherent ring and n >1. Then 

following conditions are equivalent for a left R-modules M . 

(1) M is Gorenstein FPn injective. 

(2) M has an exact left FPn  resolution and Ext
i
R(Q, M) = 0 for 

all left R-modules Q with FPn-id(Q) < ∞ and all i ≥1. 

(3) M has an exact left FPn  resolution and Ext
i
R(Q, M) = 0 for 

all FPn-injective left R-modules Q and all i ≥1. 

Moreover, if FPn-id(R) < ∞, then the above conditions 

are equivalent to  

(4)  Ext
i
R(Q, M) = 0 for all FPn-injective left R-modules Q, 

and all i ≥1. 

Proof. (1) ⇒ (2) is clear. (2) ⇒ (3) hold by dimension shifting. 

(2) ⇒ (4) Obvious. 

(3) ⇒ (1) Let f : E0 →M be an FPn-injective cover of M. 

Consider the short exact sequence 

0 →E0 →E →C0 →0, 

where E is injective and C0 is FPn-injective. Denote i : E0 →E. 

Consider the exact sequence 

0 → HomR(C0,M) →HomR(E,M)→HomR(E0,M)→ 

Ext
1

R(C0,M) = 0. 

For every f : E0 →M , there exists g: E0→M such that gi = f. 

Since f is cover, there exists a homomorphism h : E→ E0 such 

that fh = g. Therefore fhi = f, and hi is an isomorphism. It 

follows that E0 is injective. Thus, for any FPn-injective Q, 

there is the exact sequence 

HomR(Q,E0) →HomR(Q,Imf) →Ext
1

R(Q,Kerf)→ 0 . 

In addition, the exactness of 0 → Kerf → E0→Imf → 0 yields 

the exact sequence  

HomR(Q,E0) → HomR(Q, Imf) → 0, Hence Ext
1
R(Q, Kerf) = 

0. 

Hence Ext
1
R(Q,Kerf)=0. So Kerf has FPn-injective cover E1 

→Kerf with E1 is injective. Continuing this process, we can 

get a HomR(Q, − ) exact complex 

 · · · →E1→E0→M → 0 

with Ei is injective. Note that Ext
i
R

 
(R,M) = 0 for all i ≥1 and 

Ext
0

R
 
(R,M) = M since M has an exact left FPn resolution. So 

the complex 

 · · · →E1→E0→M → 0 

is exact. On the other hand Ext
i
R(Q,M) = 0 for all 

FPn-injective Q and all i ≥ 1. So M is Gorenstein FPn injective. 

(4) ⇒  (1) By the proof of (3) ⇒  (1), we obtain an exact 

complex 

ε = · · · →E1→ E0→ E
0
 → E

1
 →· · ·  

such that M = Im (E0 → E
0
), and for all FPn-injective 

Q, Hom (Q, ε ) is exact. Next we will show that Hom (Q, ε ) is 

exact for any left R-module Q with FPn-id(Q) < ∞ .We 

proceed by induction on m. The case m = 0 is clear. Let m ≥1. 

There is an exact sequence 

0 →Q →H →L → 0 

with H injective, which induces an exact sequence 

0 → Hom (L, ε) → Hom (H, ε) → Hom (Q, ε) →0 
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of complexes. Note that FPn-id(L) = m− 1, so Hom(L, ε) is 

exact. Thus Hom (Q, ε) is exact. In particular, since 

FPn-id(RR) < ∞, Hom(RR, ε) is an exact. Therefore ε is an 

exact sequence. So M is Gorenstein FPn injective. 

III. CONCLUSION 

We give some equivalent characterizations of Gorenstein 

FPn injective modules in (n-1)-coherent ring. 
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