Gorenstein FP_n injective modules

Li Zhang

Abstract— In this paper, we introduce and study Gorenstein FPn injective modules and investigate the homological properties of them.

Index Terms— Gorenstein FPn injective modules, dimensions, (n-1)-coherent ring.

I. INTRODUCTION

The flat modules and FP-injective modules play an important role in characterizing coherent rings. Naturally, many literature articles generalized these notations in relative homological algebra. In [5], Costa introduced absolutely clean and level modules. In [6], Chen and Ding introduced n-flat and n-FP injective modules. In 2015, Wei and coauthors call them FP_n -injective and FP_n -flat, respectively. In 2017, Bravo and others investigate *n*-coherent and give some equivalent characterizations of (n-1)-coherent ring [7]. On the other hand, Enochs and Jenda introduced Gorenstein projective, injective, Gorenstein flat modules, and developed Gorenstein homological algebra in [2, 3.4]. Later, many scholars further studied these modules and introduced various generalizations of these modules. In [11], Mao and Ding gave a definition of Gorenstein FP-injective modules. However, under their definition these Gorenstein FP-injective modules are stronger than the Gorenstein injective modules. In 2014, Bravo et al. introduced in [1] the notion of Gorenstein AC-projective (resp., Gorenstein AC-injective) modules and established the "Gorenstein AC-homological algebra" over an arbitrary ring.

Inspired by aforementioned work, we introduce the concept of Gorenstein FP_n -injective modules as a generalization of above Gorenstein homological modules. Then we character when a left module is Gorenstein FP_n -injective over (*n*-1)-coherent rings. In the following, we recall some notions that will be used throughout the paper.

Definition 1.1[3] A left *R*-module *M* is called Gorenstein FP-injective, if there exists an exact sequence

 $\mathbf{E}=\cdots \to E_1 \to E_0 \to E^0 \to E^1 \to \cdots$

of injective left *R*-module with $M = \text{Im}(E_0 \rightarrow E^0)$ such that the functor $\text{Hom}_R(Q, -)$ leaves the sequence exact whenever *Q* is FP-injective.

Definition 1.2[5] A ring *R* is called *n*-coherent ring, if every finite *n*-presented module coincident with finite (n+1)-presented module.

Definition 1.3[5] A *R*-modules *M* is called finite *n*-presented, if there exists an exact sequence of left *R*-modules

 $P_n \to P_{n-1} \to \cdots P_1 \to P_0 \to M \to 0,$

where P_i is finitely generated projective for $0 \le i \le n$. Such exact sequence is called a finite *n*-presentation of *M*.

Definition 1.4[7] A right *R*-modules *N* is called FP_n -flat if $Tor_1^{R}(N,F) = 0$ for any finite *n*-presented module F.

Li Zhang, Collage of Mathematics and Statistics, Northwest Normal University, Lanzhou, China

A left *R*-modules *M* is called FP_n -injective if $Ext_R^1(F, M) = 0$ for any finite *n*-presented module F.

II. GORENSTEIN FP_N INJECTIVE MODULES

Definition 2.1 A left *R*-module *M* is called Gorenstein FP_n injective, if there exists an exact sequence

 $\mathbf{E} = \cdots \to E_1 \to E_0 \to E^0 \to E^1 \to \cdots$

of injective left *R*-module with $M = \text{Im}(E_0 \rightarrow E^0)$ such that the functor $\text{Hom}_R(Q, \cdot)$ leaves the sequence exact whenever *Q* is FP_n-injective.

Remark 2.2 (1) It is clear that each injective module is Gorenstein FP_n injective.

(2) If *M* is a Gorenstein FP_n injective module, by symmetric all the kernels, the images, and the cokernels of **E** are Gorenstein FP_n injective module.

(3) Gorenstein AC injective \subseteq Gorenstein FP_n injective \subseteq Ding injective \subseteq Gorenstein injective.

(4) If n = 0, then Gorenstein injective modules are Gorenstein FP_n injective.

(5) If *R* is *n*-coherent, then Gorenstein FP_n injective modules are Gorenstein injective; If *R* is coherent, then Ding injective modules are Gorenstein FP_n injective.

(6) The class of Gorenstein FP_n injectives is closed under direct summands.

Theorem 2.3 The following assertions are equivalent for a left *R*-module *M*.

(1) M is Gorenstein FP_n injective.

(2) *M* has an exact left injective resolution which is $\text{Hom}_{\mathbb{R}}(Q, -)$ -exact all FP_n-injective left *R*-modules *Q*, $\text{Ext}^{i}_{\mathbb{R}}(Q, M) = 0$ for all $i \ge 1$.

(3) There exist a short exact sequence of left *R*-modules $0 \rightarrow K \rightarrow E \rightarrow M \rightarrow 0$, where *E* is injective and *K* is Gorenstein FP_n injective.

Proof. (1) \Leftrightarrow (2), (1) \Rightarrow (3) is clear by the definition of Gorenstein FP_n injective module.

(3) \Rightarrow (2) Since *K* is Gorenstein FP_n injective, there exist an exact sequence

 $\cdots \to E_1 \to E_0 \to K \to 0,$

which is $\operatorname{Hom}_{\mathbb{R}}(Q, -)$ –exact, where Q is FP_{n} -injective and E_{i} are injective for all $i \ge 0$.

Note that the exact sequence of left *R*-modules $0 \to K \to E \to M \to 0$ is $\text{Hom}_{\mathbb{R}}(Q, -)$ -exact, so we obtain an left injective resolution of *M*

 $\cdots \to E_1 \to E_0 \to E \to M \to 0.$

On the other hand, for all FP_n -injective Q, we have an exact sequences of left *R*-modules

 $\cdots \to \operatorname{Ext}^{i}_{\mathbb{R}}(Q,E) \to \operatorname{Ext}^{i}_{\mathbb{R}}(Q,M) \to \operatorname{Ext}^{i+1}_{\mathbb{R}}(Q,K) \to \cdots.$

By dimension shifting, $\operatorname{Ext}^{i+1}_{R}(Q, K) = \operatorname{Ext}^{i}_{R}(Q, E) = 0$ for all $i \ge 1$, therefore $\operatorname{Ext}^{i}_{R}(Q, M) = 0$. So M is Goren

stein FP_{*n*}-injective by (1) \Leftrightarrow (2).

Proposition 2.4 Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be an short exact sequence of left *R*-modules.

(1) If A and C are Gorenstein FP_n injective, then so is B.

(2) If A and B are Gorenstein FP_n injective, then so is C.

(3) If *B* and *C* are Gorenstein FP_n injective, then *A* is Gorenstein FP_n injective if and only if $\text{Ext}^1_{R}(Q, A) = 0$ for all FP_n -injective left *R*-modules *Q*.

Proof. This is similar to the proof of [4, Theorems 2.8, 2.11]. Lemma 2.5 Let M be a left R-module. Consider two exact sequences of left R-modules,

$$0 \rightarrow M \rightarrow G_0 \rightarrow \cdots \rightarrow G_{n-1} \rightarrow G_n \rightarrow 0,$$

and

 $0 \to M \to H_0 \to \cdots \to H_{n-1} \to H_n \to 0,$

where G_0, \dots, G_{n-1} and H_0, \dots, H_{n-1} are Gorenstein FP_n injective, then G_n is Gorenstein FP_n injective if and only if H_n is Gorenstein FP_n injective.

Proof. It is obtained by Proposition 2.4 and [10, Lemma 2.1]. **Proposition 2.6** Let n > 1. Then the following are ture for any (n-1)-coherent ring *R*.

(1) $\operatorname{Ext}^{i}_{R}(F, M) = 0$ for all finitely *n*-presented left *R*-modules *F*.

(2) If $0 \to T \to M \to L \to 0$ is a short exact sequence of left *R*-modules with *T* and *M* FP_n-injective, then *L* is FP_n-injective.

Proof. Let *F* be a finitely *n*-presented left *R*-module. There exists an exact sequence $0 \rightarrow T \rightarrow P \rightarrow F \rightarrow 0$, with *P* finitely generated projective and *T* finitely (*n*-1)-presented. Consider exact sequences

 $\cdots \to \operatorname{Ext}^{1}_{R}(T, N) \to \operatorname{Ext}^{2}_{R}(F, N) \to \operatorname{Ext}^{2}_{R}(P, N) \to \cdots$

since *R* is (n-1)-coherent, $\operatorname{Ext}^{1}_{R}(T, N) = 0$. $\operatorname{Ext}^{2}_{R}(F, N) = 0$. By dimension shifting $\operatorname{Ext}^{i}_{R}(F, N) = 0$.

(2) Let $0 \to T \to M \to L \to 0$ be a short exact sequence. If *N* and *M* are FP_n-injective, consider the exact sequence

 $\cdots \to \operatorname{Ext}^{1}_{R}(F, M) \to \operatorname{Ext}^{1}_{R}(F, L) \to \operatorname{Ext}^{2}_{R}(F, N) \to \cdots$

By (1) we can get $\text{Ext}^2_R(F, N) = 0$, therefore $\text{Ext}^1_R(F, L) = 0$. so *L* is FP_n-injective.

Definition 2.7 Let M be a left R-modules and n > 1. Put

 $\operatorname{FP}_{n}\operatorname{-id}(M) = \inf \{ m \mid 0 \to M \to E_{0} \to \cdots \to E_{m+1} \to E_{m} \to 0 \text{ is an } \operatorname{FP}_{n} \text{ injective of } M \} .$

If no such *m* exists, set FP_n -id(*M*) = ∞ .

Then we call FP_n -id(M) the FP_n -injective dimension of M. **Definition 2.8** Let n > 1 and N a left R-modules. Put

$$\operatorname{FP}_{n}\operatorname{-fd}(N) = \inf \{ m \mid 0 \to F_{\mathrm{m}} \to F_{\mathrm{m}-1} \to \cdots \to F_{0} \to N \to 0$$

is an FP_n flat of N }

If no such *m* exists, set FP_n -fd(*N*) = ∞ .

Then we call FP_n -id(*N*) the FP_n -flat dimension of *N*.

Proposition 2.9. Let *R* be an (n-1)-coherent ring and n > 1. Then the following conditions are equivalent for any left *R*-module *M*.

(1) $\operatorname{FP}_n\operatorname{-id}(M) \leq m$.

(2) $\operatorname{Ext}_{R}^{m}(Q, M) = 0$ for all FP_{n} -injective *R*-modules *Q*.

(3) $\operatorname{Ext}^{m+k}_{R}(Q, M) = 0$ for all $k \ge 1$, and all finite *n*-presented *R*-modules *F*.

(4) For every exact sequence $0 \to M \to E_0 \to \cdots \to E_{m-1} \to K \to 0$ where E_0, \cdots, E_{m-1} are FP_n-injective, then also *K* is FP_n-injective.

Proof. It is easy to prove by dimension shifting and Proposition 2.6.

Proposition 2.10. Let *R* be an (n-1)-coherent ring and n > 1. Then following conditions are equivalent for *N* is a left *R*-modules.

(1) $\operatorname{FP}_{n}\operatorname{-fd}(N) \leq m;$

(2) $\operatorname{Tor}_{m+1}^{R}(N, F) = 0$ for all finite *n*-presented *R*-modules *F*. (3) $\operatorname{Tor}_{m+k}^{R}(N, F) = 0$ for all $k \ge 1$, and all finite *n*-presented *R*-modules *F*. (4) For every exact sequence $0 \to K \to F_{m-1} \to \cdots \to F_0 \to N$ $\to 0$ where F_0, \cdots, F_{m-1} are FP_n-flat, then also *K* is FP_n-flat. **Proof.** It is similar to the proof of Proposition 2.9.

Proposition 2.11 Let R be an (n-1)-coherent ring and n > 1. Then following conditions are equivalent for C is a left R-modules.

(1) $\operatorname{FP}_n\operatorname{-fd}(C) = \operatorname{FP}_n\operatorname{-id}(C^+);$

(2) $\operatorname{FP}_n\operatorname{-id}_R(C) = \operatorname{FP}_n\operatorname{-fd}(C^+).$

Proof. This follows from the definition and [7, Proposition 3.5].

Theorem 2.12 Let *R* be an (n-1)-coherent ring and n > 1. Then following conditions are equivalent for a left *R*-modules *M*. (1) *M* is Gorenstein FP_n injective.

(2) *M* has an exact left FP_n resolution and $\operatorname{Ext}^{i}_{R}(Q, M) = 0$ for all left *R*-modules *Q* with FP_n-id(*Q*) < ∞ and all *i* ≥1.

(3) *M* has an exact left FP_n resolution and $\operatorname{Ext}^{i}_{R}(Q, M) = 0$ for all FP_n-injective left *R*-modules *O* and all $i \ge 1$.

Moreover, if $\operatorname{FP}_n\operatorname{-id}(R) < \infty$, then the above conditions are equivalent to

(4) $\operatorname{Ext}^{i}_{R}(Q, M) = 0$ for all FP_{n} -injective left *R*-modules *Q*, and all $i \ge 1$.

Proof. (1) \Rightarrow (2) is clear. (2) \Rightarrow (3) hold by dimension shifting. (2) \Rightarrow (4) Obvious.

(3) \Rightarrow (1) Let f : $E_0 \rightarrow M$ be an FP_n-injective cover of M. Consider the short exact sequence

 $0 \rightarrow E_0 \rightarrow E \rightarrow C_0 \rightarrow 0,$

where *E* is injective and C_0 is FP_n-injective. Denote i : $E_0 \rightarrow E$. Consider the exact sequence

 $0 \longrightarrow \operatorname{Hom}_{\mathbb{R}}(C_0, M) \longrightarrow \operatorname{Hom}_{\mathbb{R}}(E, M) \longrightarrow \operatorname{Hom}_{\mathbb{R}}(E_0, M) \longrightarrow$ Ext¹_R(C₀, M) = 0.

For every $f: E_0 \rightarrow M$, there exists $g: E_0 \rightarrow M$ such that gi = f. Since f is cover, there exists a homomorphism $h: E \rightarrow E_0$ such that fh = g. Therefore fhi = f, and hi is an isomorphism. It follows that E_0 is injective. Thus, for any FP_n-injective Q, there is the exact sequence

 $\operatorname{Hom}_{\mathbb{R}}(Q, E_0) \to \operatorname{Hom}_{\mathbb{R}}(Q, \operatorname{Imf}) \to \operatorname{Ext}^{1}_{\mathbb{R}}(Q, \operatorname{Kerf}) \to 0$.

In addition, the exactness of $0 \rightarrow \text{Kerf} \rightarrow E_0 \rightarrow \text{Imf} \rightarrow 0$ yields the exact sequence

 $\operatorname{Hom}_{\mathbb{R}}(Q, E_0) \to \operatorname{Hom}_{\mathbb{R}}(Q, \operatorname{Imf}) \to 0$, Hence $\operatorname{Ext}^1_{\mathbb{R}}(Q, \operatorname{Kerf}) = 0$.

Hence $\operatorname{Ext}^{1}_{\mathbb{R}}(Q,\operatorname{Kerf})=0$. So Kerf has FP_{n} -injective cover E_{1} \rightarrow Kerf with E_{1} is injective. Continuing this process, we can get a $\operatorname{Hom}_{\mathbb{R}}(Q, -)$ exact complex

$$\cdots \rightarrow E_1 \rightarrow E_0 \rightarrow M \rightarrow 0$$

with E_i is injective. Note that $\operatorname{Ext}^i_R(R,M) = 0$ for all $i \ge 1$ and $\operatorname{Ext}^0_R(R,M) = M$ since *M* has an exact left FP_n resolution. So the complex

 $\cdots \rightarrow E_1 \rightarrow E_0 \rightarrow M \rightarrow 0$

is exact. On the other hand $\operatorname{Ext}_{R}^{i}(Q,M) = 0$ for all FP_{n} -injective Q and all $i \ge 1$. So M is Gorenstein FP_{n} injective. (4) \Rightarrow (1) By the proof of (3) \Rightarrow (1), we obtain an exact complex

 $\varepsilon = \cdot \cdot \cdot \to E_1 \to E_0 \to E^0 \to E^1 \to \cdot \cdot \cdot$

such that $M = \text{Im} (E_0 \to E^0)$, and for all FP_n-injective Q, Hom (Q, ε) is exact. Next we will show that Hom (Q, ε) is exact for any left *R*-module Q with FP_n-id $(Q) < \infty$. We proceed by induction on *m*. The case m = 0 is clear. Let $m \ge 1$. There is an exact sequence

$$0 \rightarrow Q \rightarrow H \rightarrow L \rightarrow 0$$

with *H* injective, which induces an exact sequence $0 \rightarrow \text{Hom}(L, \varepsilon) \rightarrow \text{Hom}(H, \varepsilon) \rightarrow \text{Hom}(Q, \varepsilon) \rightarrow 0$ of complexes. Note that FP_n -id(L) = m-1, so $Hom(L, \varepsilon)$ is exact. Thus Hom (Q, ε) is exact. In particular, since FP_n -id($_{\mathbb{R}}R$) < ∞ , $Hom(_{\mathbb{R}}R, \varepsilon)$ is an exact. Therefore ε is an exact sequence. So M is Gorenstein FP_n injective.

III. CONCLUSION

We give some equivalent characterizations of Gorenstein FP_n injective modules in (n-1)-coherent ring.

REFERENCES

- [1] D. Bravo, J. Gillespie, M. Hovey, The stable model category of a general ring. arxiv:1405.5768, 2014.
- [2] E.E Enochs , Jenda , O M G, Gorenstein injective and projective modules. Math. Z., 1995, 220:611–633.
- [3] L.X. Mao, N.Q. Ding, Gorenstein FP-injective and Gorenstein flat modules. J. Algebra Appl., 2008, 7 (4): 491–506.
- [4] G. Yang, Z.K. Liu, L. Liang, Ding projective and Ding injective modules. Algebra Colloq., 2013, 20 (4): 601–612.
- [5] D.L. Costa, Parameterizing families of non -noetherian rings. Comm. Algebra, 1994, 22 (10): 3997–4011.
- [6] J.L.Chen, N.Q. Ding, On n-coherent rings. Comm. Algebra, 1996, 24: 3211–3216.
- [7] D. Bravo, M.A. P'erez, Finiteness conditions and cotorsion pairs. J. Pure Appl. Algebra, 2017, 221(6):1249–12.
- [8] E.E. Enochs, O.M.G. Jenda. Relative Homological Algebra. Walter de Gruyter, Berlin, 2000.
- [9] H. Holm, Gorenstein homological dimensions. J. Pure Appl. Algebra, 2004, 189:167–193.
- [10] X.S. Zhu, Resolving resolution dimensions. Algebr. Represent. Theory, 2013, 16:1165–1191